) හිමික	ම් ඇති	ටී <i>නි (மழுப் பதிப்புரி</i> තැඹ්න්තව ශී භංකා මතා		_	-			
இலங்க Depart தே கூத இலங்க	ກອບັບ ກອບັບ ກອບເບັບ ອອບເບັບ	ர பேரா ரீடனசத் 1 Examin 1 சூற்க பரீடனசத்	தினைக்களம் இலங் ations. Sri Lanka Depa மைற்றும் இருவை நிலை திணைக்களம் இலங்	a scoloring amati up mot stment of an and s cconservation amati by mot			තිමාග 000 නිහාශාය්ත මහාගාය්ත විභාග 000 නිහාශාය්ත නිහාශාය්ත	රේතරමන්තුව ලී ලංකා වහාග o mui இலங்கைப் பரீட்சைத் nka Department of Examinatio රේතරමන්තුව ලී ලංකා වහාන o mui இலங்கைப் பரீட்சைத்	பேச்சல்கை திணைக்களம் Das. Sri Lanka பேச்சல்கைற்ற திணைக்களம்
			අඩායන පො கல்லிப் பொத General Certifi	த் தராதரப்	பத்திர (உ	யர் தர)ப் ப	ட்கை,	2017 ஒசுஸ்ந்	
இவ	ணந்	ந்த க	றிறுகு 5ணிதம் 1athematics	I I I	10 S	Ι		பே றதுகி மூன்று மணித்தி Three hours	யாலம்
-	_		විභාග	ා අංකය)	
උප	ඉදස්:								
	*		පුශ්න පතුය ඉැ	•					
		A Ga	ාවස (පුශ්න 1 -	10) සහ B (කොටස (පුශ්ප	o 11 - 17).			
	*	A ca	හටස:						
								පිළිතුරු, සපයා ඇති ාවිත කළ හැකි ය.	් ඉඩෙහි
	*	B ca	ාටස:						
		පුශ්න	පහකට පමණක	් පිළිතුරු ස	ප <mark>යන්න</mark> . ඔබේ	ා පිළිතුරු, සපං	යා ඇති	කඩදාසිවල ලියන්න	
	*	නියමි		ත් වූ ප <mark>සු</mark> A	කොටසෙහි 8	පිළිතුරු පතුය,	B කොට)සෙහි පිළිතුරු පතුය	
	*	පුශ්න	- පතුයෙහි B කෙ	ාටස පමණක	ා් විභාග ශාල	ාවෙන් පිටතට	ගෙන ය	ාමට ඔබට අවසර අ	ැත.
						නය සඳහා පම			
	$\left[\right]$	(1	(0) සංයුක්ත ගණි				.		
	තෙ	හටස	උශ්න අංකය	ලකුණු	04	. 0	1	19	_
			1			I පතුය			
			2			II පතුය			
			3						_
			. 4		_	එකතුව		·	
		A	5		_	අවසාන ලකුං	۶ <u>۶</u>		
			7						
			8						
			9						
			10			ඉලක්කමෙන්	(qu	වසාන ලකුණු	
			11			අකුරෙන් අකුරෙන්		· · · · · · · · · · · · · · · · · · ·	·
			12						Ļ
			13					සංකේත අංක	~
		B	14			උත්තර පතු ප	ාරීක්ෂක		
			15			no 8 mm	. 1		
			16			පරීක්ෂා කළේ	: 2		1
			17			අධීක්ෂණය ක			-
			එකතුව						
	Į		පුතිශ නය]				

[දෙවැනි පිටුව බලන්න.

AL/2017/10/S-I

	/2017/10/S-I - 2 -
İ.—	A කොටස
1.	ගණීත අගනුගන මූලධර්මය භාවිතයෙන්, සියලු $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n r(3r+1) = n(n+1)^2$ බව සාධනය කරන්න.
	·····
	· · · · · · · · · · · · · · · · · · ·
2 .	$x^2-1 \geq x+1 $ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	······
	······
	······
	······
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
_	•••••••••••••••••••••••••••••••••••••••

[තුන්වැනි පිටුව බලත්න.

4

AL/2017/10/S-I

	~	
_	- 4	

 $\dot{\alpha}$

3.	ආගන්ඩ් සටහනක, $\operatorname{Arg}(z-2i)=rac{\pi}{3}$ යන්න සපුරාලන z සංකීර්ණ සංඛාා නීරූපණය කරන ලක්ෂාවල පථා
	වන / හි දළ සටහනක් අඳින්න.
	P හා Q යනු ඉහත ආගන්ඩ් සටහනෙහි පිළිවෙළින් 2i හා √3 + 5i සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂා යැයි ගනිමු. PQ දුර සොයා Q ලක්ෂාය l මත පිහිටන බව පෙන්වන්න.
	.,
÷	
4.	INFINITY යන වචනයෙහි අකුරු අට, වෙනස් ආකාර කීයකට පේළියක පිළියෙල කළ හැකි ද?
	අදුරුද් අද, පෙවාස අයෝර කයකට පෙළයක පළයෙල කළ හැක ද?
ſ	මෙම පිළියෙල කිරීම්වලින් කොපමණක
1	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
	මෙම පිළියෙල කිරීම්වලින් කොපමණක
	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
•	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
· · · · · · ·	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
· · · · · · · · · · · · · · · · · · ·	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?
· · · · · · · · · · · · · · · · · · ·	මෙම පිළියෙල කිරීම්වලින් කොපමණක (i) I අකුරු තුන ම එක ළඟ තිබේ ද?

.

140

AL/2017/10/S-I		- 4 -	ś		
	ගනිමු. $\lim_{x\to\alpha} \frac{x^3 - \alpha^3}{\tan x - \tan \alpha}$	= $3\alpha^2 \cos^2 \alpha$ බව පෙත්වන්න	• • • • • • • • • • • • • • • • • • •	ar · ·	
<i>مد</i> 	۰۰ س ۰	•••••••••••••••••••••••••••••••••••••••			••••
		***			• • • •
• • • • • • • • • • • • • • • • • • • •					
	••••••				
••••••					
					••••
	•••••••••••••••••••••••••••••••••••••••		••••••	•••••	••••
••••••					
			•••••••		••••
	•••••		******		
				•••••	• • • •
6 . 0 <a<b th="" යැයි="" ර<=""><th>ානිමු. $\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}\left(\sqrt{\frac{b-a}{b}}\cot^{-1}\right)$</th><th>$\cos x = -\frac{\sqrt{b-a}\sin x}{\sqrt{a\cos^2 r + b\sin^2 r}}$</th><th>- බව පෙත්වන්න</th><th>).</th><th></th></a	ානිමු. $\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}\left(\sqrt{\frac{b-a}{b}}\cot^{-1}\right)$	$\cos x = -\frac{\sqrt{b-a}\sin x}{\sqrt{a\cos^2 r + b\sin^2 r}}$	- බව පෙත්වන්න).	
	$\sin x$ dr. $\cos x$	$(\cos x) = -\frac{\sqrt{b-a}\sin x}{\sqrt{a\cos^2 x + b\sin^2 x}}$ යන්න.	- බව පෙත්වත්න		
	•		- බව පෙත්වත්න		
1	$\sin x$ dr. $\cos x$		- බව පෙත්වත්න		
	$\sin x$ dr. $\cos x$		- බව පෙත්වත්න		
	$\sin x$ dr. $\cos x$		- බව පෙත්වත්න		
	$\sin x$ dr. $\cos x$		- බව පෙත්වන්න		
	$\sin x$ dr. $\cos x$		- බව පෙත්වන්න	· · · · · · · · · · · · · · · · · · ·	• • • • •
أيحمد	$\sin x$ dr. $\cos x$		- බව පෙත්වන්න		
	$\sin x$ dr. $\cos x$		- බව පෙත්වත්ත		
	$\sin x$ dr. $\cos x$		- බව පෙත්වත්ත		
	$\sin x$ dr. $\cos x$		- බව පෙත්වත්ත		· · · · · · · · · · · · · · · · · · ·
	$\sin x$ dr. $\cos x$		- බව පෙත්වත්ත		
أيحمد	$\sin x$ dr. $\cos x$		- බව පෙත්වන්න		· · · · · · · · · · · · · · · · · · ·
	$\sin x$ dr. $\cos x$		- බව පෙත්වන්න		
أيورينا	$\sin x$ dr. $\cos x$		- බව පෙත්වන්න		
	$\sin x$ dr. $\cos x$		- බව පෙත්වන්න		
أيورينا	$\sin x$ dr. $\cos x$		- බව පෙත්වන්න 		

,

î

10

7.	C වකුයක්, $0 < \theta < \frac{\pi}{2}$ සඳහා $x = 3\cos\theta - \cos^3\theta$, $y = 3\sin\theta - \sin^3\theta$ මගින් පරාමිතිකව දෙනු ලැබේ.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\cot^3 \theta$ බව පෙත්වත්න.
	ස්පර්ශ රේඛාවේ අනුකුමණය – 1 වන පරිදි C වකුය මත වූ P ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.
	00
·	
8.	l_1 හා l_2 යනු පිළිවෙළින් $3x - 4y = 2$ හා $4x - 3y = 1$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු.
	$({f i})$ l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(ii) l_1 හා l_2 අතර සුළු කෝණයේ සමච්ඡේදකයෙහි සමීකරණය සොයන්න.
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	······
	······································

9.	
	රේඛාව යැයි ද ගනිමු. S හා l හි ඡේදන ලක්ෂා හරහා යන්නා වූ ද S වෘත්තය පුලම්බව ඡේදනය කරන්නා වූ ද වෘත්තයෙහි සමීකරණය සොයන්න.
-	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	olo
10.	$-\pi < \theta \le \pi$ සඳහා $\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right)^2 = 1 + \sin\theta$ බව පෙන්වන්න. ඒ නයීන්, $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{\frac{3}{2}}$ බව
	පෙන්වා $\cos \frac{\pi}{12} - \sin \frac{\pi}{12}$ හි අගය ද සොයන්න. $\sin \frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ බව අපෝහනය කරන්න.
	· · ·
	· · · · · · · · · · · · · · · · · · ·

**

.

AL/2017/10/S-I

- 7 -

(B)	යලු ම	பாலாகா திதிகதி அதிதிலி / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]
11 (Sile Clark	ලංකා මහණකා Oepartn ලංකා මහත්තෙ	2லம் எருப்பைக்களும் இருவை குரைப் புதன்து இருப்பது குடிக்கு குறைப்பிடன்து இணைக்களம் இலங்கைப் பரடன்தத் திணைக்களம் மட்பர்டனசத் திணைக்களம் இலங்கைப் பதன்த திணைக்களும் இருங்கைப் பரடன்தத் திணைக்களம் இலங்கைப் பரடனசத் திணைக்களம் ent of Examinations, Sri Lanka Department எ துவைக்குள் குறுப்பு இருங்கைப் பரடனசத் திணைக்களம் இரைப்பர்டனசத் திணைக்களம் இலங்கைப் பதன்து குறைப்பு இருங்கைய பரடனசத் திணைக்களம் இலங்கைப் பரடனசத் திணைக்களம் இலங்கைப் பரடனசத் திணைக்களம் இலங்கைப் பரடனசத் திணைக்களம் வட்பர்டனசத் திணைக்களம் இலங்கைப் பரடனசத் திணைக்களம் இலங்கைப் பரடனசத் திணைக்களம் கட்பரிடனசத் திணைக்களம் இலங்கைப் பரடனசத் திணைக்களம் இலங்கைய பரடனசத் திணைக்களம் குறுக்கு இலங்கைப் பரடனசத் திணைக்களம் இலங்கைப் பரடனசத் திணைக்களம் குறுக்கு இலங்கைப் பரடனசத் திணைக்களம் இலங்கைப் பரடனசத் திணைக்களம் குறுக்கு இலங்கைப் பரடனசத் திணைக்களம்
		கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 கைஸ்ந்
	89 - (1	General Certificate of Education (Adv. Level) Examination, August 2017
	இை	ක්ත ගණිතය I mij 5 සංක් හෝ I bined Mathematics I
		B කොටස
		* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.
11.	(<i>a</i>)	$f(x) = 3x^2 + 2ax + b$ යැයි ගනිමු; මෙහි $a, b \in \mathbb{R}$ වේ.
		$f(x)=0$ සමීකරණයට තාත්ත්වික් පුහින්න මූල දෙකක් තිබෙන බව දී ඇත. $a^2>3b$ බව පෙන්වන්න.
		f(x)=0 හි මූල $lpha$ හා eta යැයි ගනිමු. a ඇසුරෙන් $lpha+eta$ ද b ඇසුරෙන් $lphaeta$ ද ලියා දක්වන්න.
		$\left \alpha - \beta \right = \frac{2}{3} \sqrt{a^2 - 3b}$ බව පෙන්වන්න.
		lpha+eta හා $ lpha-eta $ ස්වකීය මූල ලෙස ඇති වර්ගජ සමීකරණය
		$9x^2 - 6(a + \sqrt{a^2 - 3b})x + \frac{4\sqrt{a^4 - 3a^2b}}{a^2b} = 0$ මගින් දෙනු ලබන බව තවදුරටත් පෙන්වන්න.
_	(<i>b</i>)	$g(x) = x^3 + px^2 + qx + 1$ යැයි ගනිමු; මෙහි $p, q \in \mathbb{R}$ වේ. $(x-1)(x+2)$ මගින් $g(x)$ බෙදූ විට ශේෂය $3x+2$ වේ. $(x-1)$ මගින් $g(x)$ බෙදූ විට ශේෂය 5 බව හා $(x+2)$ මගින් $g(x)$ බෙදූ විට ශේෂය -4 බව පෙන්වන්න.
		p හා q හි අගයන් සොයා $(x+1)$ යන්න $g(x)$ හි සාධකයක් බව පෙන්වන්න.
12.	(<i>a</i>)	x හි ආරෝහණ බල වලින් $(5+2x)^{14}$ හි ද්විපද පුසාරණය ලියා දක්වන්න.
		$r = 0, 1, 2,, 14$ සඳහා ඉහත පුසාරණයේ x^r අඩංගු පදය T_r යැයි ගනිමු.
		$x \neq 0$ සඳහා $\frac{T_{r+1}}{T_r} = \frac{2(14-r)}{5(r+1)} x$ බව පෙන්වන්න.
		ඒ නයින් , $x=rac{4}{3}$ වන විට, ඉහත පුසාරණයෙහි විශාලතම පදය ලබාදෙන r හි අගය සොයන්න.
	(<i>b</i>)	$c \ge 0$ යැයි ගනිමු. $r \in \mathbb{Z}^+$ සඳහා $\frac{2}{(r+c)(r+c+2)} = \frac{1}{(r+c)} - \frac{1}{(r+c+2)}$ බව පෙන්වන්න.
		ඒ නයින්, $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n \frac{2}{(r+c)(r+c+2)} = \frac{(3+2c)}{(1+c)(2+c)} - \frac{1}{(n+c+1)} - \frac{1}{(n+c+2)}$ බව
		පෙත්වන්ත.
		$\sum_{r=1}^{\infty} \ rac{2}{(r+c)(r+c+2)}$ අපරිමිත ශෝණිය අභිසාරී බව අපෝහනය කර එහි ඓකාය සොයන්න.
		c සඳහා සුදුසු අගයන් සහිත ව`මෙම ඓකාය භාවිතයෙන්, $\sum_{r=1}^{\infty} \frac{1}{r(r+2)} = \frac{1}{3} + \sum_{r=1}^{\infty} \frac{1}{(r+1)(r+3)}$ බව
		පෙත්වත්ත.

13. (a) $\mathbf{A} = \begin{pmatrix} 2 & a & 3 \\ -1 & b & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & -1 & a \\ 1 & b & 0 \end{pmatrix}$ හා $\mathbf{P} = \begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix}$ යැයි ගනිමු; මෙහි $a, b \in \mathbb{R}$ වේ. $\mathbf{A}\mathbf{B}^{\mathrm{T}} = \mathbf{P}$ බව දී ඇත; මෙහි \mathbf{B}^{T} මගින් \mathbf{B} නාහසයෙහි පෙරළුම දැක්වේ. a = 1 හා b = -1 බව පෙන්වා, a හා b සඳහා මෙම අගයන් සහිත ව $\mathbf{B}^{\mathsf{T}}\mathbf{A}$ සොයන්න. ${f P}^{-1}$ ලියා දක්වා, එය භාවිතයෙන්, ${f PQ}={f P}^2+2{f I}$ වන පරිදි ${f Q}$ නාහාසය සොයන්න; මෙහි ${f I}$ යනු ගණය 2වූ ඒකක නාහාසයයි. (b) ආගන්ඩ් සටහනක, |z|=1 සපුරාලන z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂායන්හි පථය වූ C හි දළ සටහනක් අඳින්න. $z_0 = a(\cos \theta + i \sin \theta)$ යැයි ගනිමු; මෙහි a > 0 හා $0 < \theta < \frac{\pi}{2}$ වේ. $\frac{1}{z_0}$ හා z_0^2 යන සංකීර්ණ සංඛාා එක එකක මාපාංකය a ඇසුරෙන් ද පුධාන විස්තාරය heta ඇසුරෙන් ද සොයන්න. P, Q, R හා S යනු පිළිවෙළින් $z_0, \frac{1}{z_0}, z_0 + \frac{1}{z_0}$ හා z_0^2 යන සංකීර්ණ සංඛාා ඉහත ආගන්ඩ් සටහනෙහි නිරූපණය කරන ලක්ෂා යැයි ගනිමු P ලක්ෂාය ඉහත C මත පිහිටන විට (i) Q හා S ලක්ෂා ද C මත පිහිටත බවත් (ii) *R* ලක්ෂාය තාත්ත්වි<mark>ක අක්ෂය</mark> මත 0 හා 2 අතර පිහිටන බවත් පෙන්වන්න. 14. (a) $x \neq 1, 2$ සඳහා $f(x) = \frac{x^2}{(x-1)(x-2)}$ යැයි ගනිමු. $x \neq 1, 2$ සඳහා f(x)හි වසුත්පන්නය, f'(x) යන්න $f'(x) = \frac{x(4-3x)}{(x-1)^2(x-2)^2}$ මගින් දෙනු ලබන බව පෙන්වත්ත. ස්පර්ශෝන්මුඛ හා හැරුම් ලක්ෂා දක්වමින් y = f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න. පුස්තාරය භාවිතයෙන් $\frac{x^2}{(x-1)(x-2)} \le 0$ අසමානතාව විසඳන්න. (b) යාබද රූපයේ පෙන්වා ඇති අඳුරු කළ පෙදෙසෙහි D වර්ගඵලය 385 m² වේ. මෙම පෙදෙස ලබාගෙන ඇත්තේ දිග මීටර 5xද පළල මීටර 3yද වූ ABCDඍජුකෝණාසුයකින්, දිග මීටර y ද පළල මීටර x ද වූ සර්වසම ඍජුකෝණාසු හතරක් ඉවත් කිරීමෙනි. $y = \frac{35}{r}$ බව පෙත්වා, අඳුරු කළ පෙදෙසෙහි මීටරවලින් මනින ලද පරිමිතිය P යන්න x>0සඳහා $P = 14x + \frac{350}{x}$ මගින් දෙනු ලබන බව පෙත්වත්ත. P අවම වන පරිදි x හි අගය සොයන්න.

[නවවැනි පිටුව බලන්න.

15. (a) (i) $\frac{1}{x(x+1)^2}$ හින්න භාග ඇසුරෙන් පුකාශ කර, **ඒ නයින්**. $\int \frac{1}{x(x+1)^2} dx$ සොයන්න. (ii) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int x e^{-x} \, \mathrm{d}x$ සොයා, **ඒ නයින්**, $y = x e^{-x}$ වකුයෙන් ද x = 1, x=2 හා y=0 සරල රේඛාවලින් ද ආවෘත පෙදෙසෙහි වර්ගඵලය සොයන්න. (b) c > 0 හා $I = \int_{0}^{c} \frac{\ln(c+x)}{c^2 + x^2} dx$ යැයි ගනිමු. $x = c \tan \theta$ ආදේශය භාවිතයෙන්, $I = \frac{\pi}{4c} \ln c + \frac{1}{c} J$ බව පෙන්වන්න; මෙහි $J = \int_{-\infty}^{+\infty} \ln (1 + \tan \theta) \, d\theta$ වේ. a නියතයක් වන $\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} f(a-x) dx$ සූහය භාවිතයෙන්, $J = \frac{\pi}{8} \ln 2$ බව පෙන්වන්න. $I = \frac{\pi}{8c} \ln(2c^2)$ බව අපෝහනය කරන්න. $16. m \in \mathbb{R}$ යැයි ගනිමු. $P \equiv (0,1)$ ලක්ෂාය y = mx මගින් දෙනු ලබන l සරල රේඛාව මත නොපිහිටන බව පෙත්වත්ත. l ට ලම්බව P හරහා වූ සරල රේ<mark>ඛාව ම</mark>ත <mark>ඕනෑම</mark> ලක්ෂායක ඛණ්ඩාංක (*–mt*, t + 1) ආකාරයෙන් ලිවිය හැකි බව පෙන්වන්න; මෙහි t යනු ප<mark>රාමි</mark>තිය<mark>කි.</mark> ඒ නයින්, P සිට l ට ඇඳි ලම්බයේ අඩිය වූ Q ලක්ෂායෙහි ඛණ්ඩාංක $\left(rac{m}{1+m^2},rac{m^2}{1+m^2}
ight)$ මගින් දෙනු ලබන බව පෙත්වත්ත. m විචලනය වන විට, Q ලක්ෂාය $x^2+y^2-y=0$ මගින් දෙනු ලබන S වෘත්තය මත පිහිටන බව පෙන්වා, Q හි පථයේ දළ සටහනක් xy-තලයෙහි අඳින්න. තව ද $R \equiv \left(\frac{\sqrt{3}}{4}, \frac{1}{4}\right)$ ලක්ෂාය S මත පිහිටන බව පෙන්වන්න. R ලක්ෂායේ දී S බාහිරව ස්පර්ශ කරන හා x-අක්ෂය මත කේන්දුය පිහිටන S' වෘත්තයේ සමීකරණය සොයන්න. S^\prime හි කේන්දුයම කේන්දුය ලෙස ඇතිව S අභාන්තරව ස්පර්ශ කරන වෘත්තයේ සමීකරණය ලියා දක්වන්න. 17. (a) (i) $0^{\circ} < \theta < 90^{\circ}$ සඳහා $\frac{2\cos(60^{\circ} - \theta) - \cos\theta}{\sin\theta} = \sqrt{3}$ බව පෙන්වන්න. (ii) රූපයේ පෙන්වා ඇති ABCD චතුරසුයෙහි AB = AD, $A\hat{B}C = 80^\circ$, $C\hat{A}D = 20^\circ$ හා $B\hat{A}C = 60^\circ$ වේ. $\hat{ACD} = lpha$ යැයි ගනිමු. ABC සිකෝණය සඳහා සයින් නීතිය භාවිතයෙන්, $rac{AC}{AB} = 2\cos 40^\circ$ බව පෙත්වත්ත. මීළඟට ADC තිුකෝණය සඳහා සයින් නීතිය භාවිතයෙන්, $\frac{AC}{AD} = \frac{\sin(20^\circ + \alpha)}{\sin \alpha}$ බව පෙන්වන්න. D $\sin(20^\circ + \alpha) = 2\cos 40^\circ \sin \alpha$ බව අපෝහනය කරන්න. ඒ නයින්, $\cot \alpha = \frac{2\cos 40^\circ - \cos 20^\circ}{\sin 20^\circ}$ බව පෙන්වන්න. 80% 60° දැන්, ඉහත (i) හි පුතිඵලය භාවිතයෙන්, $\alpha = 30^\circ$ බව පෙන්වන්න. $(b) \cos 4x + \sin 4x = \cos 2x + \sin 2x$ සමීකරණය විසඳන්න.

